Google Kubernetes Engine (GKE)
Big picture
Enable Calico in GKE managed Kubernetes service.
Value
GKE has built-in support for Calico, providing a robust implementation of the full Kubernetes Network Policy API. GKE users wanting to go beyond Kubernetes network policy capabilities can make full use of the Calico Network Policy API.
How to
To enable Calico network policy enforcement, follow these step-by-step instructions: Enabling network policy enforcement.
The geeky details of what you get:
Kubernetes network policies are implemented by network plugins rather than Kubernetes itself. Simply creating a network policy resource without a network plugin to implement it, will have no effect on network traffic.
The Calico plugin implements the full set of Kubernetes network policy features. In addition, Calico supports Calico network policies, providing additional features and capabilities beyond Kubernetes network policies. Kubernetes and Calico network policies work together seamlessly, so you can choose whichever is right for you, and mix and match as desired.
How Kubernetes assigns IP address to pods is determined by the IPAM (IP Address Management) plugin being used.
The Host-local IPAM plugin allocates a static range of IP addresses for each node at node creation time. The pods on each node are then allocated IP addresses from within each node’s static range.
By default, the static range is a /24 (256 IP addresses).
For most deployments, Host-local IPAM is a simple and adequate solution. However, using a static address range per node typically means less efficient use of the available IP address space. If you are running particularly large clusters, or have other significant enterprise address space demands, then it may be worth considering Calico IPAM as an alternative to provide more efficient address space management.
The CNI (Container Network Interface) plugin being used by Kubernetes determines the details of exactly how pods are connected to the underlying network.
The Calico CNI plugin connects pods to the host networking using L3 routing, without the need for an L2 bridge. This is simple and easy to understand, and more efficient than other common alternatives such as kubenet or flannel.
Operating without using an overlay provides the highest performance network. The packets that leave your pods are the packets that go on the wire.
For completeness, in contrast, with an overlay network, packets between pods on different nodes are encapsulated using a protocol such as VXLAN or IPIP, wrapping each original packet in an outer packet that uses node IPs, and hiding the pod IPs of the inner packet. This can be done very efficiently by the Linux kernel, but it still represents a small overhead, which you might want to avoid if running particularly network intensive workloads.
The underlying cloud VPC (Virtual Private Cloud) is used to route pod traffic between nodes, and understands which pod IP address are located on which nodes. This avoids the need for an overlay, and typically has good performance characteristics.
In addition, pod IPs are understood by the broader cloud network, so for example, VMs outside of the cluster can connect directly to any pod without going via a Kubernetes service if desired.
Calico stores the operational and configuration state of your cluster in a central datastore. If the datastore is unavailable, your Calico network continues operating, but cannot be updated (no new pods can be networked, no policy changes can be applied, etc.).
Calico has two datastore drivers you can choose from
- etcd - for direct connection to an etcd cluster
- Kubernetes - for connection to a Kubernetes API server
The advantages of using Kubernetes as the datastore are:
- It doesn’t require an extra datastore, so is simpler to install and manage
- You can use Kubernetes RBAC to control access to Calico resources
- You can use Kubernetes audit logging to generate audit logs of changes to Calico resources
For completeness, the advantages of using etcd as the datastore are:
- Allows you to run Calico on non-Kubernetes platforms (e.g. OpenStack)
- Allows separation of concerns between Kubernetes and Calico resources, for example allowing you to scale the datastores independently
- Allows you to run a Calico cluster that contains more than just a single Kubernetes cluster, for example, bare metal servers with Calico host protection interworking with a Kubernetes cluster or multiple Kubernetes clusters.
Calico’s flexible modular architecture supports a wide range of deployment options, so you can select the best networking and network policy options for your specific environment. This includes the ability to run with a variety of CNI and IPAM plugins, and underlying networking options.
The Calico Getting Started guides default to the options most commonly used in each environment, so you don’t have to dive into the details unless you want to.
You can click on any deployment option to learn more.
Next steps
Required
Recommended